Introduction to Fiber Optic Systems

Professor John Powers

Department of Electrical & Computer Engineering Naval Postgraduate School Monterey CA 93943

(831) 656-2679 DSN 878-2679 jpowers@nps.navy.mil

© John P. Powers, 2001 Intro-

Course Overview

- Communications applications
 - High data rate-distance products
 - WDM (wavelength-division multiplexing) technology
 - -High data integrity (BERs <10-9)
 - -Point-to-point links
 - » Long-distance terrestrial telcomm
 - » Underwater-cable telcomm
 - -Network applications
 - Local-area computer networks (LANs)
 - Wide-area telecommunications networks (WANs)

- Subjects
 - -Fibers
 - Splices, connectors, and couplers
 - -Sources
 - Receivers (detector and preamp)
 - -System analysis
 - » Link margin
 - » Link data rate
 - Fiber data networks (FDDI and SONET)

Course Goals

- Fiber vocabulary
- Why fibers?
- Link analysis and design
- Exposure to trade-off issues

- · Optical source
 - Semiconductor laser or LED
- Modulator
 - Analog or digital
 - Direct modulated source or external modulator
- Set of connectors or permanent fiber splice
 - Join fiber lengths
- Repeater
 - Electronically detect and regenerate signal
- · Optical amplifier
 - Amplify signal power
- Optical receiver (detector, preamp, logic circuits)
 - Recover transmitted signal

Decisions, Decisions, Decisions.....

- Signal
 - -Analog or digital?
- Source:
 - -LED or laser? Wavelength?
 - -Modulation format
 - » AM, FM for analog signals
 - » OOK, FSK, PSK for digital waveform
 - -Cost, reliability, output power level?
 - -Temperature stability?
- Detector:
 - -Detector material (wavelength) ?
 - -Sensitivity?
 - -Cost?
 - -Temperature stability?

- Fiber:
 - -Attenuation?
 - -Bandwidth (single-mode or multimode) ?
 - -Distance?
 - Cabling strength members, power conductor, size, weight?
- Connectors and splices:
 - -Splices or connectors ?
 - -Splice under operating conditions?
 - -Keep out water or gases?
- Etc., etc...

Why Fibers?

- Wide bandwidth
 - -Fiber bandwidth & losses independent of diameter
- Lower costs than copper
 - -For high bandwidth signals
 - -Cost-bandwidth crossover point constantly decreasing
- Light weight & low volume
 - -"50 miles per gallon"
- Immunity from electromagnetic interference (EMI)
 - -No EM pickup
 - -Elimination of crosstalk
- Elimination of sparking
- Compatibility with modern solid state devices

- · Bandwidth needs constantly increasing
 - Solution: increase carrier frequency
 - * HF to VHF to UHF to microwaves to millimeter waves and, finally, light waves
- · Coax losses increase linearly with bandwidth
 - Lower losses by increasing diameter

Example of Fiber Voice Communicator

Data Rate and Bandwidth

- Signal frequencies: 0 to BW Hz
- Sampling:
 - Nyquist criterion says sample wave at a rate equal to or greater than twice BW
 - $> S \times BW$
 - » S ranges from 6 to 10
- Digitization: Number of bits per sample *N* depends on accuracy required
- Bit rate (b/s): $B_R = S \times N \times BW$
- Required link bandwidth \boldsymbol{B} (Hz) for bit rate of \boldsymbol{B}_R :

$$B \approx B_R/2$$

- Ex. HDTV
 - 1000 x 1000 pixels, 12 bits per pixel, 3 colors, 40 frames per sec, uncompressed

$$B_R = (10^3)(10^3)(12)(3)(40) = 14.4 \text{ Gb / s}$$

 $B = B_R / 2 = 7.2 \text{ GHz}$

Standard Telcomm Data Rates

Tables 1.1 & 1.2, p. 4

Name	Data rate	Number of
	North America	voice channels
DS-0	64 kb/s	1
DS-1 (T1)	1.544 Mb/s	24
DS-2 (T2)	6.312 Mb/s	96
DS-3 (T3)	44.736 Mb/s	672
DS-4 (T4)	274.176 Mb/s	4,032
(TBD)	1.7 Gb/s	20,000

Japan	Europe
1.544 Mb/s	2.048 Mb/s
6.312 Mb/s	8.448 Mb/s
32.064 Mb/s	34.364 Mb/s
97.728 Mb/s	139.264 Mb/s
396.20 Mb/s	565.148 Mb/s

Bandwidth demand

Why Not Fibers?

- Lack of bandwidth demand
 - -HDTV requires high bandwidth
- Lack of standards
 - -Standards being set by
 - » DoD
 - » Telecomm industry
 - » Computer industry
- Radiation darkening
 - Depends on dose, exposure, glass materials, impurity types and levels
 - -Clears with time

History

- 1850s:
 - Principle of total internal reflection:
 Tyndall
- 1950s:
 - Development imaging optical fibers for medical and NDT applications (short distance)
- Late 1960s:
 - Kao and Werts independently propose communications applications
 - » 20 dB/km losses to be competitive with RF repeaters
- Early 1970s:
 - Glass purification techniques reduce losses to few tenths of dB/km (see notes)
 - First-generation technology
 - » Sources/receivers: visible and near-IR (from 600 to 920 nm)
 - » Fibers: multimode fiber bundles

- Late 1970s, early 1980s:
 - Second-generation technology
 - » Sources/receivers: visible and near-IR (600 to 920 nm)
 - » Fibers: individual multi-mode fiber
- Mid -1980s to present::
 - Third generation technology
 - » Sources/receivers: near-IR (1300, 1550 nm)
 - » Fibers: individual single-mode fibers
- Present:
 - Fourth generation technology
 - » 1550 nm operation to use fiber amplifiers
 - » Several wavelengths per fiber (WDM)
 - Wavelength addressable networks

The three Corning scientists credited with the invention of low-loss optical fiber in 1970: Dr. Donald Keck, Dr. Bob Maurer, and Dr. Peter Schultz.

	The the attention is
	But recome the to did!
	Lift lan at eletion him him land, eight is held
	1HV-850, RC-100, R-100Ka. 5= 92,2 nor Sy > 158 intimple. Both flow: 5 = 48,7 nor Sy = 159 (lune age of flow)
	setting to I decree draw again: 5 = 47.5 L = 43 tim @ 0657 = 28.1 miles
	From the markers po = 10 kg the = 18.2 de/h and the trible of the sound of the
	m tight charges and a second of the
ca to Protective	page 17. A man 0.19 mg little of 0.376 To common the param to letter of hills and g 0.36 med a 157: Too day it to che. The Under con the to- columnts of 63.0 is to che. The Under con the to- columnts of 63.0 is to che.
300	U = # (3.7) [m, (6) ut) - m, (6, ut)] = #(3.7) [(.400) - (1.507)]
7730	= 183

The page from Dr. Donald Keck's lab notebook recording the breakthrough loss measurement of 17 dB/km in August 1970.

Alternate Texts

- G.P. Agrawal, Fiber-Optic Communication Systems, 2nd Ed., Wiley-Interscience, 1997
- J. Hecht, *Understanding Fiber Optics, 3rd Ed.*, Prentice Hall, 1999.
- P.E. Green, Jr., Fiber Optic Networks, Prentice Hall, 1993.
- G. Keiser, Optical Fiber Communications, 3rd Edition. McGraw-Hill, 2000.
- J.C. Palais, Fiber Optic Communications, 5th Edition. Prentice Hall, 1997.

- J.P. Powers, *Introduction to Fiber Optic Systems*, Richard D. Irwin, Inc., 1993.
- J.P. Powers, Introduction to Fiber Optic Systems, 2nd Edition, WBC McGraw-Hill (formerly Richard D. Irwin, Inc.), 1997.
- J. Senior, Optical Fiber Communications: Principles and Practice. Prentice-Hall, 1998.
- A. Yariv, Optical Electronics in Modern Communications, 5th Ed., Oxford University Press, 1997.

- · US research journals
 - - * IEEE Journal on Quantum Electronics
 - * Applied Optics
 - * Bell System Technical Journal
 - * Other journals
 - - * Journal of Lightwave Technology
 - - * IEEE Lightwave Communications Systems Magazine} (changed to IEEE Lightwave Telecommunications Systems Magazine; ceased publication November 1992)
 - Device and technique research results:
 - * IEEE Photonics Technology Letters
 - * Electronic Letters